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Abstract: We discover and analytically describe self-similar pulses
existing in homogeneously broadened amplifying linear media in a vicinity
of an optical resonance. We demonstrate numerically that the discovered
pulses serve as universal self-similar asymptotics of any near-resonant short
pulses with sharp leading edges, propagating in coherent linear amplifiers.
We show that broadening of any low-intensity seed pulse in the amplifier
has a diffusive nature: Asymptotically the pulse width growth is governed
by the simple diffusion law. We also compare the energy gain factors of
short and long self-similar pulses supported by such media.
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1. Introduction

Only not too long ago did the optical community realize [1] that self-similarity is quite a ubiq-
uitous feature of optical systems. The phenomena as diverse as optical pulse evolution in Hall
gratings [2], stimulated Raman scattering [3], formation of self-written waveguides [4], and
fractal formation in nonlinear media [5] exhibit self-similarity in one form or another. Recently,
long-term self-similar evolution of pulses in nonlinear fiber amplifiers [6–8], in passive fibers
of lasers [9] has received much attention due to its fundamental interest and potential applica-
tions. Lately, fiber lasers with self-similar evolution in the amplifier and soliton evolution in the
anomalous dispersion segments [10] as well as all-normal-dispersion lasers working in a self-
similar light propagation regime [11] were proposed and experimentally realized. Self-similar
dynamics of beams in nonlinear waveguide amplifiers and in conservative nonlinear media have
also been explored [12–16].

Self-similar evolution of pulses and beams in resonant media has also been explored. In par-
ticular, universal quasi-self-similar asymptotics of ultrashort light propagation in coherent non-
degenerate and degenerate nonlinear amplifiers was examined in Refs. [17] and [18], respec-
tively. Also, self-similarity in superfluorescence in homogeneously broadened resonant media
was explored as well [19]. In addition to the early pioneering work [17–19], however, some
recent studies [15,20] show that a wealth of self-similar regimes exists in such media. In partic-
ular, self-similar beams can be generated in cubic-quintic nonlinear media doped with resonant
impurities in the limit of a large detuning from the impurity resonance [15]. By the same token,
we have shown elsewhere [20] that in resonant nonlinear absorbers, self-similar optical kinks
are formed as intermediate asymptotics of any incident pulse with a long tail in the trailing
edge. In this context, it is instructive to explore the possibility of self-similar pulse formation
in resonant linear media. At first glance, the very proximity to optical resonance(s), coupled
with the system linearity, appears to preclude self-similarity of a sufficiently short pulse: Strong
dispersion at resonance(s) would, in general, seem to cause severe pulse reshaping. One would
then also wonder whether self-similar pulses in such media, if any, would be universal asymp-
totics of very weak seed pulses. The affirmative answer to the last question would augur well
for the experimental realization of such similaritons.

In this paper, we demonstrate analytically that self-similar optical pulses, albeit of a highly
asymmetric shape, can indeed propagate in resonant linear amplifiers. Such an asymmetric self-
similar shape is a manifestation of dynamic balance between linear amplification and phase
relaxation processes in resonant propagation of short pulses in the absence of inhomogeneous
broadening and host medium dispersion. We further show that a low-intensity seed pulse of any
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profile with a sharp leading edge evolves into a self-similar one upon propagation inside the
amplifier. The short pulse broadening has a universal diffusive character such that the rms width
grows as a square root of the propagation distance. Thus, we demonstrate, both analytically and
with numerical simulations that the discovered self-similar pulses are universal intermediate
asymptotics in resonant coherent amplifiers. The intermediate character of the asymptotics is
imposed by the system linearity: As long as the pulse area will have grown enough, our linear
approximation surely breaks down; sufficiently small initial pulse areas and/or short enough
amplifier lengths are required for the linear approximation to hold over the entire amplifier
length.

2. Physical model and mathematical preliminaries

We model a resonant medium as a collection of two-level atoms with the resonance frequency
ω0, thereby limiting our consideration to the case of one internal resonance. We assume here-
after that the pulse spectrum is mainly affected by homogeneous broadening, implying that
γ⊥ � δ , γ⊥ and δ being transverse (dipole moment) relaxation rate and a characteristic spectral
width of inhomogeneous broadening, respectively. Under these conditions, the evolution of a
pulse with the carrier frequency ω in the medium is governed by a reduced wave equation,

∂ζ Ω = iκσ ; (1)

subject to the slowly-varying envelope approximation (SVEA):

∂ζ Ω � kΩ, ∂τ Ω � ωΩ. (2)

Here Ω = 2degE /h̄ is the Rabi frequency associated with the pulse amplitude E , N is an atom
density, deg is a dipole matrix element between the ground and excited states of any atom, la-
beled with the indices g and e, respectively; κ =ωN|deg|2/cε0h̄ is a coupling constant, k=ω/c,
and Eq. (1) is written in terms of the transformed coordinate and time, ζ = z and τ = t − z/c.
The dipole moment matrix element σ and one-atom inversion w obey the Bloch equations [21]

∂τ σ =−(γ⊥+ iΔ)σ − iΩw, (3)

and
∂τw =−γ‖(w−weq)− i

2 (Ω
∗σ −Ωσ∗). (4)

In Eqs. (3) and (4) γ‖ is a longitudinal relaxation rates associated with one-atom inversion
damping, Δ = ω −ω0 is a detuning from the resonance and weq is a value of the one-atom
inversion in the absence of the pulse (equilibrium).

In the low-intensity limit, the atomic population is hardly affected by the pulse such that the
one-atom inversion is approximately given by its equilibrium value,

w � weq =±1, (5)

where the upper/lower sign corresponds to amplifier/absorber case: All atoms remain in the up-
per/lower level. Physically, the linear amplification regime of a weak probe pulse can be realized
using a strong pump in a three-level configuration, standard of laser systems, see e.g. [22]. The
latter is illustrated schematically in Fig. 1 where the pump rate P and the upper level relaxation
rate must be large enough, P � γ⊥ and Γ � γ⊥, to achieve population inversion between levels
“e” and “g”.

Mathematically, the approximation (5) implies linearization of the dipole moment evolution
equation viz.,

∂τ σ =−(γ⊥+ iΔ)σ ∓ iΩ. (6)
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Fig. 1. Schematics of a pump-probe three-level system modeling coherent linear amplifier.
The resonant transition takes place between levels e and g.

In the following, we distinguish two limiting cases: “long” pulses, tp � T⊥ and “short” ones,
tp ≤ T⊥–in the case tp � T⊥, the pulses may be called “ultrashort”–where T⊥ = γ−1

⊥ and tp is a
characteristic pulse width.

Long pulses. In this case, the atomic variables can be adiabatically eliminated–using Eq. (6)
and equating σ to its quasi-steady-state value with respect to Ω–which will result in the pulse
evolution equation in the form

∂ζ Ω =±
(

α+iβ
2

)
Ω. (7)

Here we introduced an inverse Beer’s gain/absorption length α and an overall phase accumula-
tion rate β by the expressions,

α =
2κγ⊥

γ2
⊥+Δ2

, β =
2κΔ

γ2
⊥+Δ2

. (8)

It follows at once from Eq. (7) that for sufficiently long pulses, any pulse grows/decays expo-
nentially in such a medium, maintaining its overall shape,

Ω(τ,ζ ) = Ω0(τ)e±(α+iβ )ζ/2, (9)

where Ω0(t) describes an initial pulse profile, and Eq. (9) is well-known Beer’s amplifica-
tion/absorption law.

Short pulses. For simplicity, we consider pulses exactly on resonance with the atomic tran-
sition, Δ = 0; the pulse field and dipole moment evolution equations can then be written as

∂ζ Ω =
i
2

γ⊥α0σ , (10)

and
∂τ σ =−γ⊥σ ∓ iΩ. (11)

where α0 = 2κ/γ⊥. Our treatment to this point is equally applicable to amplifying and absorb-
ing media. Hereafter we focus on short pulse propagation in amplifiers.

3. Short self-similar pulses

The inspection of Eqs. (10) and (11) reveals that the electric field of a self-similar pulse and
atomic dipole moment profiles ought to be sought in the form

Ω(ζ ,τ) = γ⊥θ(τ)Ω[γ⊥τF(ζ )]e−γ⊥τ , (12)

#144374 - $15.00 USD Received 18 Mar 2011; revised 21 Apr 2011; accepted 21 Apr 2011; published 4 May 2011
(C) 2011 OSA 9 May 2011 / Vol. 19, No. 10 / OPTICS EXPRESS   9753



and
σ(ζ ,τ) = θ(τ)G(ζ )σ [γ⊥τF(ζ )]e−γ⊥τ . (13)

Here θ(τ) is a unit step function describing a sharp leading edge of the pulse, F(ζ ) and
G(ζ ) are arbitrary at the moment and Ω and σ are dimensionless functions. Substituting the
Ansatz (12) and (13) into Eqs. (10) and (11), we can show that self-similarity is sustained
provided that

F(ζ ) = α0ζ +T⊥/tp; G(ζ ) = 1/F(ζ ). (14)

Further, the dimensionless pulse envelope Ω in the amplifying medium satisfies the equation,

ηΩ′′
+Ω′ −Ω/2 = 0, (15)

where we introduced a similarity variable η by

η = γ⊥τ(α0ζ +T⊥/tp). (16)

and the prime denotes a derivative with respect to η .
Analytically solving Eq. (15), we can obtain a self-similar pulse envelope in a linear ampli-

fier. The overall pulse profile can then be represented as

Ω(η ,τ) ∝ γ⊥θ(τ)1F1(1/2,1,−2
√

2η)exp(
√

2η − γ⊥τ), (17)

where 1F1(a,c,x) is a confluent hypergeometric function, and we dropped an arbitrary (small)
initial pulse amplitude. Eq. (17) can be expressed in a more compact form as

Ω(η ,τ) ∝ γ⊥θ(τ)I0(
√

2η)exp(−γ⊥τ), (18)

where I0(x) is a modified Bessel function of zero order. We note that for sufficiently long
propagation distances, α0ζ � T⊥/tp, the self-similar pulse profile no longer depends on tp,
yielding a universal self-similar profile

Ω(τ,ζ ) ∝ γ⊥θ(τ)I0(2
√

κζ τ)exp(−γ⊥τ). (19)

It can be inferred from the analysis of Eq. (18) that the pulse evolution is governed by a
synergy of three factors: pulse shape asymmetry, coherent gain and dipole phase relaxation.
In the absence of nonlinearity, the self-similarity arises as a consequence of dynamic balance
between coherent gain and linear damping; the sharp leading edge of the pulse profile ensures
the balance in the absence of bulk medium dispersion and inhomogeneous broadening. Thus,
the asymmetry of a seed pulse shape appears to be the only requirement for self-similarity in
the studied linear system to emerge.

We stress here that in the linear limit, damping of the trailing edge of the pulse by the linear
relaxation processes allows for the finite energy self-similar pulse formation. The situation here
is drastically different from quasi-self-similarity emerging in the nonlinear amplification of
ultrashort pulses–the term should be understood in the sense defined in Sec. 2–studied in [17].
In the latter case, linear damping is negligible and the nonlinearity promotes the emergence of
finite-energy pulses in the amplifying medium. We notice also that the discovered self-similar
pulses have no chirp–since dispersion plays no role here–which sets them apart from more
familiar parabolic pulses in nonlinear fiber amplifiers. The latter require a linear chirp to prevent
wave breaking [6,8]. We also note that owning to a different physical nature, our similaritons are
markedly different from recently discovered quasi-parabolic pulses in nonlinear amplifiers [23].
While the former are chirp-free self-similar pulses, the latter are phase-modulated steady-state
pulses moving with the speed of light.
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Fig. 2. Normalized intensity of a short self-similar pulse as a function of dimensionless
time T = τ/T⊥ and propagation distance Z = α0ζ . The pulse intensity is normalized to its
peak value at Z = 0. The initial pulse width is chosen to be tp = T⊥.

We now proceed to describing the properties of new self-similar pulses. In Fig. 2, we dis-
play the self-similar pulse profile evolution as a function of the dimensionless time T = τ/T⊥
for several values of the dimensionless propagation distance Z = α0ζ . The self-similar char-
acter of the pulse dynamics is clearly discernable in the figure. To demonstrate the universal
nature of the discovered self-similar regime, we numerically simulate the evolution of a generic
asymmetric Gaussian pulse, Ω1(t,0) ∝ θ(t)exp(−t2/t2

p), in the amplifier and compare its pro-
file with the self-similar asymptotics. The results are presented in Figure 3. To ensure the two
pulses are sufficiently different in the source plane, we take the Gaussian pulse to be half as
long as the self-similar one at Z = 0: tp = T⊥/2. In the inset to the figure, we compare short-
distance pulse dynamics of the two pulses. We see in the figure that although the Gaussian
pulse profile deviates from the self-similar asymptotics over short distances–at least over first
few Beer’s amplification lengths as is seen in the inset–it quickly converges to the universal
asymptotics over longer distances. It then is seen to coincide with the self-similar asymptotics
profile to within numerical round-off errors [24]. We obtained qualitatively similar results for
hyperbolic secant and exponential profiles with cut off leading edges: Ω2(t,0)∝ θ(t)sech(t/tp),
and Ω3(t,0) ∝ θ(t)exp(−t/tp).

To reenforce the message, we examine the rms width– defined as ΔT =

√
〈T 2〉−〈T 〉2 and

measured in the units of T⊥–of the universal self-similar asymptotics on pulse propagation in
the amplifier. The averaging is taken over the pulse intensity distribution, for instance,

〈T 2(Z)〉 ≡
∫ ∞

0 dTT 2 |E (T,Z)|2∫ ∞
0 dT |E (T,Z)|2 . (20)

With the help of the asymptotic expansion of I0(x) [25], an analytical expression for the rms
width can be derived and presented in an exceptionally simple form

ΔT (Z)�
√

3Z/2. (21)

In other words, the pulse rms width grows with the distance in a diffusive manner with the
effective diffusion coefficient equal to 3αT 2

⊥/8 (in original units). We then evaluate and display
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Fig. 3. Normalized intensity of a short Gaussian (solid) and self-similar (dashed) pulses as
functions of dimensionless time T = τ/T⊥ and propagation distance Z = α0ζ . The pulse
intensities are normalized to their peak values at Z = 0. The initial pulse width is chosen
to be tp = T⊥/2 and tp = T⊥ for Gaussian and self-similar pulses, respectively. The inset
shows pulse dynamics for short propagation distances.

Fig. 4. Average widths of Gaussian, secant hyperbolic and exponential pulses as func-
tions of the dimensionless propagation distance Z =α0ζ . The self-similar asymptotic pulse
width dependence on the propagation distance is shown as the solid curve.

the behavior of asymmetric Gaussian, hyperbolic secant, and exponential pulse widths in Fig. 4.
The self-similar asymptotic pulse width is drawn in a solid curve. In the inset to the figure, we
exhibit the pulse width dynamics over a short range of propagation distances. We can conclude
from the figure that although the width of an arbitrarily shaped seed pulse initially deviates
from the self-similar pulse width, the former asymptotically tends to the latter over a long
enough propagation distance, thereby underscoring the universal character of the discovered
self-similar asymptotics.

Next, we observe that the applicability of SVEA is not, in general, guaranteed for pulses with
sharp fronts. Hence, the presence of a step function has to be physically justified as follows. A
practical realization of an ideal sawtooth-like pulse involves a finite switching time tsw describ-
ing the fast rise of its leading edge. Thus for a short pulse, tp ∼ T⊥, the pulse duration (rise time
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Fig. 5. Energy gain factor G(Z) for a short (solid) and long (dashed) self-similar pulse as a
function of the dimensionless propagation distance Z = α0ζ .

of the pulse front edge) has to be much shorter than the pulse width, yet much longer than an
optical cycle for the SVEA–see Eq. (2)–to hold:

ω−1 � tsw � tp ∼ T⊥. (22)

The complimentary conditions (22) can be realized in a laboratory for picosecond pulses in
dilute atomic vapors, say, for which, typically T⊥ ∼ 1÷ 10 ps [21] by choosing, for example,
tsw ∼ 10÷ 100 fs. Mathematically, the leading front step function can then be approximated,
for instance, as

θ(τ)� [1+ tanh(τ/tsw)]/2, (23)

with the excellent approximation attainable for tsw = 0.01T⊥.
Finally, we exhibit in Fig. 5 a short-pulse energy gain factor,

G(ζ ) =
∫

dτ|E (ζ ,τ)|2/
∫

dτ|E (0,τ)|2, (24)

for the novel self-similar pulses as a function of the propagation distance. The exponential gain
factor for long pulses,

G0(ζ ) = exp(α0ζ ), (25)

is presented for comparison as well. On comparing the two, we conclude that for sufficiently
long distances, long pulses are amplified much more efficiently than are short ones. This is
because short pulses have very broad energy spectra with large fractions of their energies stored
in the pulse tails. The latter lie well outside of the medium gain spectrum and are then not
efficiently amplified. Narrow spectra of long pulses, on the other hand, fall entirely within the
medium gain spectrum, which results in strong amplification. These qualitative conclusions are
bourn out by the asymptotic analysis yielding the following universal long-term gain behavior
for asymmetric short pulses

G∞(ζ ) ∝
eα0ζ
√

α0ζ
. (26)
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Hence, comparing Eqs. (26) and (25), we see that the long-pulse gain dwarfs the short-pulse
one in the long-term limit.

In summary, we have discovered a self-similar regime of short pulse propagation in linear
amplifiers in the vicinity of an optical resonance. The novel self-similar pulses have sharp
leading front, resulting in a highly asymmetric sawtooth-like pulse profile. We have shown that
the new pulses serve as intermediate universal asymptotics for any asymmetrically shaped pulse
propagation in resonant amplifiers in the linear regime. We note that our results hold true in the
absence of inhomogeneous broadening. It will be instructive to determine the influence of the
latter on the emergence of universal self-similar asymptotics in the system. This topic will be
addressed in detail in a forthcoming publication.
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